# Cellular Automata and Urban Development Simulation: Transition Rules Creation Process Based on Statistical Analysis. A methodological approach

## Valentine Judge <sup>1,2</sup>, Jean-Philippe Antoni <sup>1</sup>

 $^{1}$ ThéMA (UMR 6049 CNRS - Franche-Comte University) &  $^{2}$ LISER

Conférence ThéoQuant 21-05-2015 Supported by the National Research Fund, Luxembourg (Project INTER/CNRS/12/02)

| Introduction  | Methodology<br>0000000 | Simulation and validation | Perspectives |
|---------------|------------------------|---------------------------|--------------|
|               | S                      | ommaire                   |              |
|               |                        |                           |              |
| Introduction  |                        |                           |              |
| Methodology   |                        |                           |              |
| Simulation an | d validation           |                           |              |

Perspectives



| ntroduction | Methodology | Simulation and validation | Perspectives |
|-------------|-------------|---------------------------|--------------|
|             | 000000      | 0000                      |              |
|             |             |                           |              |

## Land use simulation and cellular automata

Cellular Automata have been widely used for modeling land use change in geography (*i.e. Tobler, 1970; Couclelis, 1985; Phipps, 1989; White, 1997; Torrens, 2002, etc.*) Main attractive features: simplicity, interaction between neighboring land units, emergence.

Cellular Automata : "System of spatially located and interconnected automata." (Beneson & Torrens, 2004)

Automata : "Processing mechanism with characteristics that changed over time based on its internal characteristics, rules and external inputs." (Beneson & Torrens, 2004)



$$A \sim (S, T, R)$$

- A : Automata
- S:Sate
- T: Transition rules
- R: Neighborhood





# Urban development study using cellular automata: A transition rules calibration approach

## Hypothesis:

• The transition of a cell from one land use type to another is driven by its initial land use and by the land use of cells from its neighborhood.

## Questions:

- How can transition be defined?
- How can transition be written as rules?





Methodology

Simulation and validation

Perspectives

# Cellular approach



Land use cover (1990)

#### Urban Changes (1990-2006)



#### Re-classified CorineLandCover

|             |      |          |       |          | 2006 |        |      | 1990-2006 |
|-------------|------|----------|-------|----------|------|--------|------|-----------|
| NewUrban    |      |          | Urban | IndusCom | Agri | Forest | Loss | Change    |
| Urban Urban |      | Urban    | 810   | 0        | 1    | 0      | -1   | 29        |
| IndusCom    |      | IndusCom | 12    | 309      | 1    | 0      | -13  | 46        |
| Agri        | 1990 | Agri     | 18    | 59       | 4780 | 23     | -100 | -50       |
| Agri        |      | Forest   | 0     | 0        | 48   | 572    | -48  | -25       |
| Forest      |      | Gain     | 30    | 59       | 50   | 23     |      |           |



| Introduction                            | Methodology                     | Simulation and validation | Perspectives |
|-----------------------------------------|---------------------------------|---------------------------|--------------|
|                                         | S                               | ommaire                   |              |
| Introduction                            |                                 |                           |              |
| Methodology<br>Methodolo<br>Rules defin | gical process<br>ition proposal |                           |              |

Principal component analysis and hierarchical classification

Decision tree

Simulation and validation

Perspectives





| Introduction | Methodology<br>○●○○○○○ | Simulation and validation | Perspectives |
|--------------|------------------------|---------------------------|--------------|
|              | Rules de               | finition proposal         |              |

Assumption CA based: Land use of cells settled in the neighborhood can explain on a potential urban transition of a cell.

$$A \sim (S, T, R)$$

Objective: Create a set or transition rules based on the assumption.

 $S_{i(t)} \rightarrow S_{f(t+1)} : R_{Sa}\{N_{Sa}(D_a;n_a), N_{Sb}(D_b;n_b), N_{Sc}(D_c;n_c), \dots\}$ 

Questions :

- Which states?
- Which distances?
- How many cells?

 $S_{i(t)}$ : Initial sate  $S_{f(t+1)}$ : Final state  $R_{Sa}$ : Neighborhood  $N_{Sa}$ : Neighbor characterized by State "a"  $n_a$ : Number of State "a" neighbor  $D_a$ : Distance where is found State "a" neighbor

 $\ensuremath{\text{Proposition}}$  : Create transition rules based on statistical analysis of the neighborhood of cells that carried out specific transition.



| Introduction | Methodology<br>000000 | Simulation and validation | Perspectives |
|--------------|-----------------------|---------------------------|--------------|
|              |                       | Dataset                   |              |

### Datasets : Ernolsheim-Bruche area

- Tables {Individual, initial state, final state, a 5 pixels neighborhood}.
- Data: 1990-2006.
- Variable shows the number of cells of a land use type at a specific distance.





# Principal component analysis and hierarchical classification

## Objectives :

- Target variables summarizing the most of information contained in the dataset being explored.
- Create cluster of individuals (cells) considering variables defining them.
- Analyze the neighborhood of individuals from the same cluster in order to get land use influence threshold (number of cells within a specific distance).

#### Dataset :

- Focused on cells that carried out a transition from a  $\lambda$  state to an urban state (30 individuals).



#### Introduction

#### Methodology ○○●○○○

Simulation and validation

Perspectives

## Set of rules creation



### Method :

- Variable that summarize the most of the dataset information are used as a base for the rules set (i.e. IndusCom4px, Urban4px, Agri4px, Forest5px).
- A minimum and maximum threshold is set from the analysis of individuals or clusters from the hierarchical classification(i.e. 4 < IndusCom4px < 7, 0 < Urban4px < 6, etc.).



| Introduction | Methodology | Simulation and validation | Perspectives |
|--------------|-------------|---------------------------|--------------|
|              | De          | ecision tree              |              |

## Objective :

• Sequential partition of the dataset using a top down approach. The aim is to target the variable that best split the different cluster of data left at each step.

#### Dataset :

- Every cells regardless of their transition.
- Adding a binary categorical variable to characterize an urban transition or not.



| Introduction | Methodology<br>○○○○●○ | Simulation and validation | Perspectives |
|--------------|-----------------------|---------------------------|--------------|
|              | Set of rules          | creation                  |              |

### **Decision tree**

### Method:

• Rules can be extracted directly from the tree analysis. Each "leave" corresponding to the transition into urban land use is considered and transcribe as rules.



| Introduction | Methodology<br>○○○○○● | Simulation and validation | Perspectives |
|--------------|-----------------------|---------------------------|--------------|
|              | Rules                 | s set analysis            |              |
|              |                       |                           |              |

Why do we analyse rules sets produced?

- Are the same variables extracted with both methods?
- If yes: Are the threshold similar?
- If not: what is the extend of the dissimilarity?

Principal Component Analysis based rules set

 $Agri or IndusCom \rightarrow Urban:$ 

 $0 \leq Urban4px \leq 6 ~ And ~ 4 \leq IndusCom~ 4px \leq 7 ~ And~ ~ 3 \leq Agri3px \leq 11 ~ And~ 1 \leq Forest5px \leq 4$ 

## Decisions tree based rules set

 $Agri \; or \; IndusCom \; \rightarrow Urban:$ 

 $\label{eq:uban4} Urban4px > 0 \ \textit{And} \ \textit{IndusCom} \ 1px \geq 1 \ \textit{And} \ \textit{Induscom5px} \ < 9 \ \textit{And} \ \textit{Agri5px} \ < 28 \ \textit{And} \ \textit{Forest5px} \ > 0$ 



| Introduction                                              | Methodology<br>0000000           | Simulation and validation | Perspectives |
|-----------------------------------------------------------|----------------------------------|---------------------------|--------------|
|                                                           | 9                                | Sommaire                  |              |
|                                                           |                                  |                           |              |
| Introduction                                              |                                  |                           |              |
| Methodology                                               |                                  |                           |              |
| Simulation and<br>Validation<br>Rules sets si<br>Comments | validation<br>mulation and analy | rsis                      |              |
| Perspectives                                              |                                  |                           |              |



| Introduction | Methodology<br>0000000 | Simulation and validation<br>••••• | Perspectives |
|--------------|------------------------|------------------------------------|--------------|
|              | Validat                | ion                                |              |

Objective :

- Evaluation of the results quality comparing with data from 2006.
- Compare result produced by the PCA/HC method and the decision tree method.

## Validation method: GIS based

- Pixel to pixel validation
- buffer 100m, 200m, 500m







Introduction

Methodology

Simulation and validation

Perspectives

## Rules sets simulation and analysis

## Case: Simulation matching the most real NewUrban cells.





| Introduction | Methodology    | Simulation and validation | Perspectives |
|--------------|----------------|---------------------------|--------------|
|              | 0000000        | 0000                      |              |
|              |                |                           |              |
|              | Rules sets sin | nulation and analysis     |              |

## <u>Case:</u> Simulation matching the most real NewUrban cells.





| Introduction | Methodology<br>000000 | Simulation and validation<br>○○○● | Perspectives |  |
|--------------|-----------------------|-----------------------------------|--------------|--|
| Comments     |                       |                                   |              |  |
|              |                       |                                   |              |  |

Rules sets analysis:

- Some identical variables pop up from both analysis (i.e.Urban4px, Forest5px)
- Not all variables that pop up are identical (distances can differ i.e. Indus-Com5px vs IndusCom4px)

Simulation analysis:

- PCA simulation is more efficient (localize 100% of the real 2006 NewUrban cells)
- DT simulation is more compact than PCA simulation
- Both simulation seems to spatially complement on another having a 72% similarity when a 100m accuracy is taken into account.

<u>General comment</u>: Both set of rules are partly satisfying or interesting to explore but miss accuracy.



| Introd | luction           | Methodology<br>0000000 | Simulation and va | lidation | Perspectives |
|--------|-------------------|------------------------|-------------------|----------|--------------|
|        |                   | S                      | Sommaire          |          |              |
|        |                   |                        |                   |          |              |
|        | Introduction      |                        |                   |          |              |
|        | Methodology       |                        |                   |          |              |
|        | Simulation and va | alidation              |                   |          |              |
|        | Perspectives      |                        |                   |          |              |
|        |                   |                        |                   |          |              |





# Urban development study using cellular automata: A transition rules calibration approach

First results:

- Rules can be written based on the analysis of the neighborhood.
- Several solution can be use, two have been tested:
  - Principal component analysis with hierarchical classification
  - Decision trees
- Both set of rules are partly satisfying according to the validation but miss accuracy



| Introduction | Methodology<br>0000000 | Simulation and validation | Perspectives |  |
|--------------|------------------------|---------------------------|--------------|--|
| Perspective  |                        |                           |              |  |

First results : perspectives ?

- Improve rules sets according to both methodologies
- Improve the accuracy of the rules (i.e. add new variables ? accessibility ?)
- Apply the methodology developed here on a larger area (reduce the bias from the data)
- Explore results more deeply from a thematic point of view







# Cellular Automata and Urban Development Simulation: Transition Rules Creation Process Based on Statistical Analysis. A methodological approach

## Valentine Judge <sup>1,2</sup>, Jean-Philippe Antoni <sup>1</sup>

 $^{1}$ ThéMA (UMR 6049 CNRS - Franche-Comte University) & $^{2}$ LISER

Conférence ThéoQuant 21-05-2015 Supported by the National Research Fund, Luxembourg (Project INTER/CNRS/12/02)