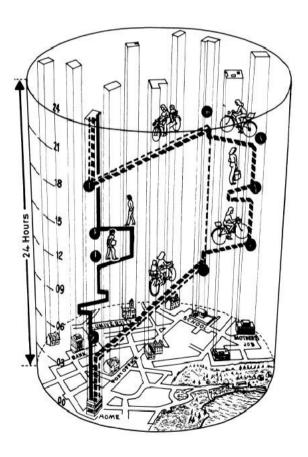


MIRO3: Des modèles orientés experts et données pour comprendre et simuler les dynamiques intra-urbaines quotidiennes. Pierre Fosset_{1,2}, Nicolas Marilleau² et la Miro Team*

¹UMR 8501 Geographie cité – CNRS, 13 rue du Four F-75006 PARIS ²UMI 209 UMMISCO – IRD/UPMC, 31 avenue Henri Varagnat F-93143 Bondy Cedex

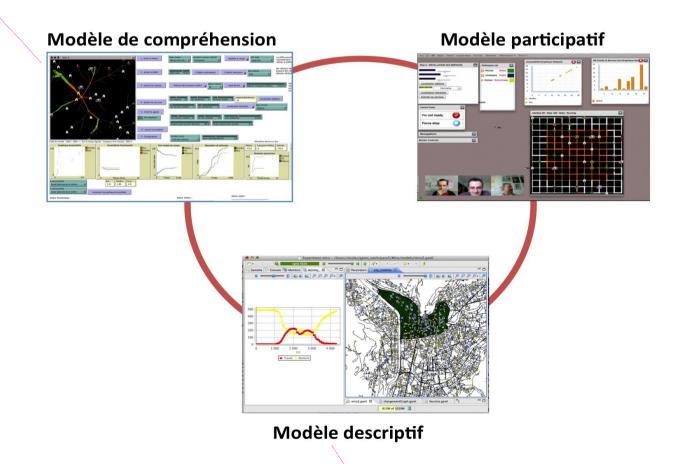

MIRO3 : Des modèles orientés experts et données pour comprendre et simuler les dynamiques intra-urbaines quotidiennes. Pierre Fosset_{1,2}, Nicolas Marilleau² et la Miro Team

¹UMR 8501 Geographie cité − CNRS, 13 rue du Four F-75006 PARIS ²UMI 209 UMMISCO − IRD/UPMC, 31 avenue Henri Varagnat F-93143 Bondy Cedex

Approche générale

Explorer les impacts possibles de politiques urbaines sur l'accessibilité spatio-temporelle :

- > Par simulation informatique
- > En se basant essentiellement sur les activités quotidiennes comme point de départ de la mobilité
- > En confrontant les différents acteurs de l'aménagement à la complexité du système par le jeu (Modèle « jouet » Smart Access)
- > A partir des données des enquêtes ménages déplacements pour l'approche descriptive (Modèle descriptif « GaMiro » sur la plateforme GAMA)



MIRO3: Des modèles orientés experts et données pour comprendre et simuler les dynamiques intra-urbaines quotidiennes. Pierre Fosset_{1,2}, Nicolas Marilleau² et la Miro Team

¹UMR 8501 Geographie cité − CNRS, 13 rue du Four F-75006 PARIS ²UMI 209 UMMISCO − IRD/UPMC, 31 avenue Henri Varagnat F-93143 Bondy Cedex

Approche générale

Les modèles Smart Access et SM2A2

Construction du modèle, déroulement

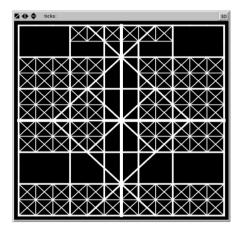
Création d'une ville virtuelle simplifiée, axée sur :

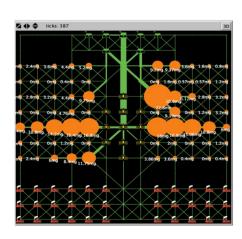
Les habitations

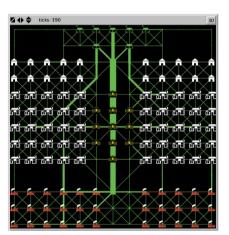
Les services disponibles

Le réseau routier (et les transports en commun)

La population et ses « préférences »


(quel emploi du temps, quel seuil de satisfaction)


Analyse des indicateurs :


Satisfaction de habitants sur la mobilité, l'accessibilité

Émission de polluants

Part modale des différents transports

Les modèles Smart Access et SM2A2

Limites du modèle

Le choix du mode de transport

Les simulations se font sur une « journée », il n'y a pas d'apprentissage

L'interface est sur NetLogo, donc rétro, pour un jeu sérieux

Pour aller plus loin

Nous proposerons des scénarios de jeu plus ciblés pour réduire le nombre de paramètres à gérer

Sessions de jeu

Possibilités d'analyse à affiner encore

Construction du modèle de ville virtuelle

- Des agents informatiques aux comportements individuels
- Des activités géolocalisées, organisées en emploi du temps par agent.
- Des spécialistes et acteurs pour interpréter et considérer de réels cas d'application

Construction de la population synthétique

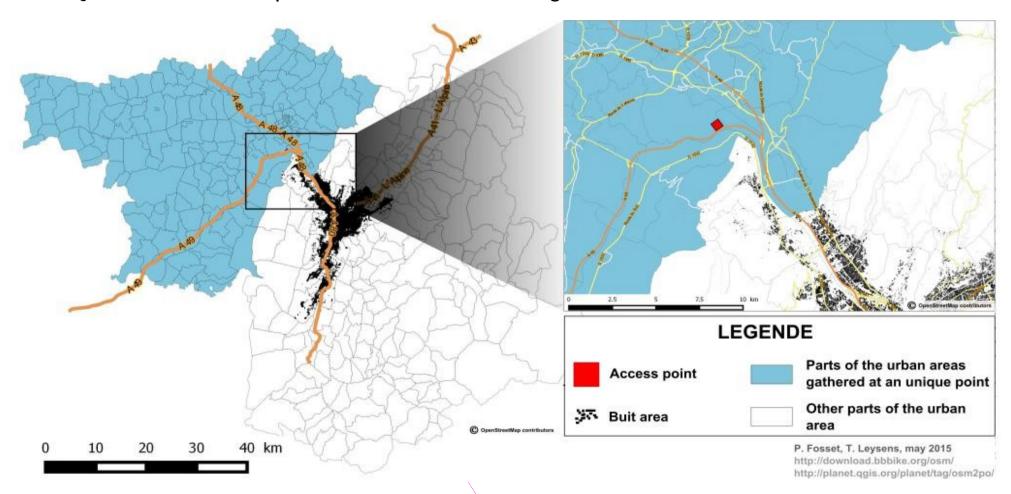
- Quels attributs?
 - Attributs issus des EMD et utiles à la compréhension des résultats
 - Attribut spécifique : l'emploi du temps individuel
- Quel outil ? Utilisation de Gen* (http://www.irit.fr/genstar/) :

Fréquences des attributs à générer, en fonction d'autres attributs, ou sans lien

Liste de N agents avec leurs attributs

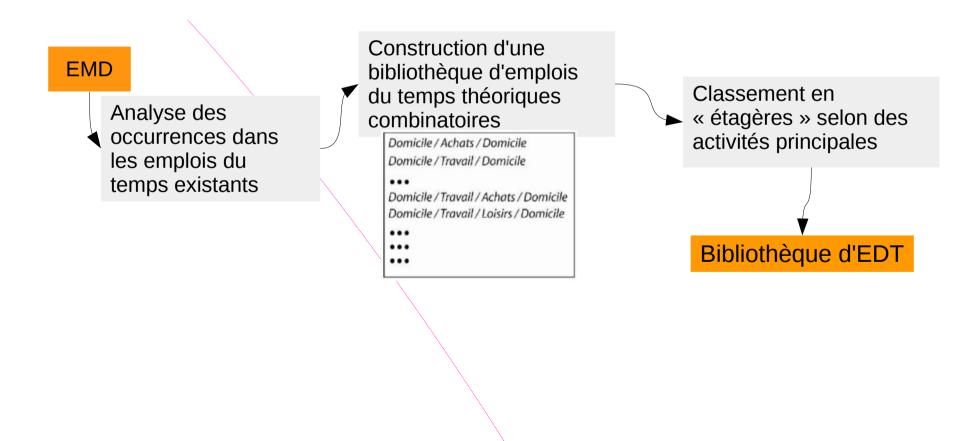
ZONE

AGE CATEGORIE

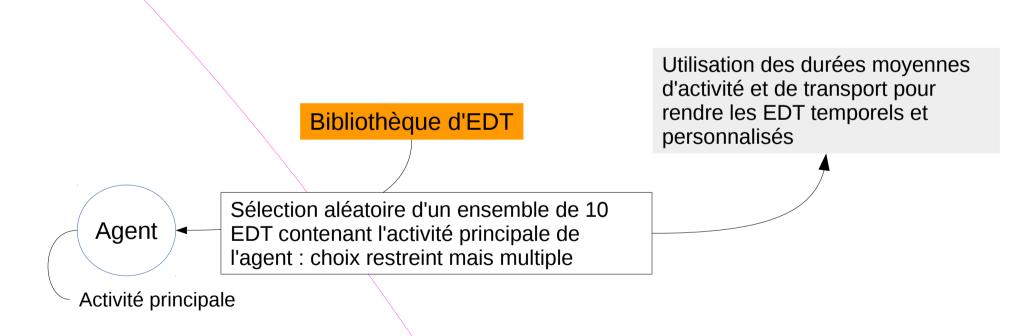


POPULATION SYNTHETIQUE

[ID_HABITANT, SEXE, CATEGORIE, ZONE, AGE, ACTIVITE_PRONCIPALE, DOMICILE, LIEU_ACTIVITE_PRINCIPALE, TYPE_VEHICULE]



• Quelle affectation spatiale ? Affectation des agents selon leur zone de résidence.



Comment générer des emplois du temps individuels ? :

• Comment assigner les emplois du temps individuels ? :

	PARTENAIRES SCIENTIFIQUES		
MIDO			
Modélisation Intra-urbaine des Rythmes			
	Géographie-Cités UMR 8504 CNRS/Paris1/Paris7		
ORAPHIE-C/7K	OMR 6504 CNRS/FallS1/FallS/		
9			
UMR 8504	Contact : A. Banos		
	Laboratoire d'Informatique de		
	l'Université de Franche Comté – EA 4157		
	EA 415/		
LIFC	Contact : C. Lang		
^ ^ ^	Laboratoire PACTE – Territoires		
	UMR 51 94 - Grenoble		
Pacte			
UNITÉ MIXTE DE RECHERCHE CNRS	Contact : S. Chardonnel		
EMA	Laboratoire Théoriser et		
UMR 6049	Modéliser pour Aménager –		
	UMR 6049		
	Université de Bourgogne		
	Contact . T. Thérronin		
	Contact : T. Thévenin		

Janvier 2011, 48 mois + 6 mois 345 785 euros Pôle « Véhicules du futur »

CRESE

EA 3190, Université de Franche-Comté

45 D Avenue de l'observatoire 25030 Besançon Cedex tel : 33 (0) 03 81 66 68 91

Contact: Pierre-Henri MORAND

UR 079 GEODES

Centre IRD Ile de France 32, avenue Henri Varagnat 93143 Bondy cedex

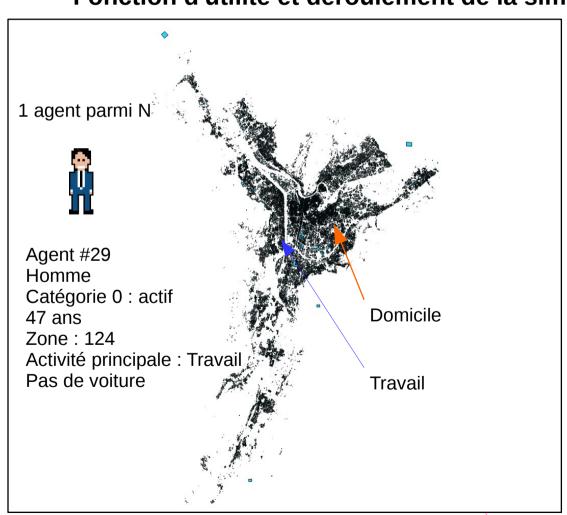
Téléphone: (33) 01 48 02 55 24 (secrétariat)

Fax: (33) 01 48 47 30 88

Contact: Nicolas MARILLEAU

Laboratoire CEDETE EA 1210

UFR Lettres, Langues et Sciences Humaines 10 rue de tours, BP 46527 45065 ORLEANS CEDEX 2


Tel: 02 38 49 48 44

Contact: Annabelle BOFFET-MAS

1

Fonction d'utilité et déroulement de la simulation : exemple d'un agent

Initialisation de la simulation : quel EDT choisir ?

1	Domicile	0h00	10h20
1	Travail	11h05	18h35
1	Santé	18h55	19h30
1	Démarches	19h50	20h15
1	Domicile	20h35	0h00
2	Domicile	0h00	7h15
2	Travail	8h00	14h30
2	Restaurant	14h40	15h25
2	Achats	15h45	16h10
2	Domicile	16h30	0h00
3	Domicile		
3			

Fonction d'utilité et déroulement de la simulation : exemple d'un agent

Calcul des utilités de chaque EDT : $V_i = \sum \beta_k x_a$

Avec:

Vi : utilité de l'EDT i

Bk : coefficient affecté à la valeur Xik (durée activité ou transport)

1	Domicile	0h00	10h20	
1	Travail	11h05	18h35	
1	Santé	18h55	19h30	> V1
1	Démarches	19h50	20h15	
1	Domicile	20h35	0h00	
2	Domicile	0h00	7h15	
2	Travail	8h00	14h30	
2	Restaurant	14h40	15h25	> V2
2	Achats	15h45	16h10	
2	Domicile	16h30	0h00	
3	Domicile			
3				

Puis calcul d'une probabilité associée :

$$P_i = \frac{e^{V_i}}{\sum_{k} e^{V_j}}$$

Avec Pi la probabilité de choisir l'EDT i.

L'agent choisit un EDT à l'initialisation. Il en choisit un autre si il n'est pas satisfait.

→ seuil de satisfaction : ratio à définir

Plan d'expérimentation

- Mise en place d'une zone de restriction de la circulation de véhicules immatriculés avant Janvier 2001 (EURO 3 et inférieurs).
 - → quels impacts sur les choix d'EDT?
 - → quel impact sur les trajets choisis par les individus : suivi des trajectoires individuelles
 - → quelle population est la plus impactée, en fonction des différents attributs
 - → analyse comparée du trafic général et des émissions de polluant

Questions?

Merci de votre attention

*Composition de l'équipe MIRO au complet :

Arnaud Banos
Arnaud Piombini
Christophe Lang
Elise Beck
Isabelle André-Poyaud
Nicolas Marilleau
Pierre Fosset
Sonia Chardonnel
Thomas Thévenin
Thomas Leysens

Pour me contacter et connaître nos résultats à venir : p.fosset@parisgeo.cnrs.fr