Paysage & infrastructures de transport
Modélisation des impacts des infrastructures sur les réseaux écologiques

Le développement d’infrastructures linéaires de transport conduit, à toutes les échelles, à une artificialisation du territoire et au morcellement du milieu naturel. La fragmentation du paysage est un processus spatial qui s’accompagne d’une diminution progressive de la connectivité entre les différents éléments nécessaires au bon déroulement des processus écologiques. Ainsi, le maintien d’un bon niveau de connectivité entre les habitats naturels, s’il est compatible avec les activités humaines, est devenu un enjeu majeur pour la préservation de la biodiversité.

En mobilisant des méthodes empruntées à la théorie des graphes et à l’écologie du paysage, la thèse cherche à démontrer l’intérêt de la modélisation des réseaux écologiques par les graphes paysagers, dans l’analyse des impacts des infrastructures à l’échelle régionale.

Cette démarche, fondée sur la modélisation, a permis de démontrer l’influence du réseau écologique du chevreuil dans la localisation des collisions entre les individus de cette espèce et les véhicules empruntant le réseau de la DIR est en Franche-Comté. Le travail a également permis de proposer un cadre méthodologique pour localiser l’impact potentiel de la branche est de la LGV Rhin-Rhône sur la distribution d’une espèce, et estimer la distance de perturbation de cette infrastructure. Enfin, deux démarches sont proposées pour évaluer quantitativement et hiérarchiser des aménagements afin d’éviter ou d’atténuer ces impacts. Les résultats montrent la pertinence de l’intégration des réseaux écologiques dans les études d’impacts des infrastructures de transport.

Mots-clés : réseaux écologiques, infrastructures linéaires de transport, évaluation d’impact, mitigation, modélisation, graphes paysagers, métriques de connectivité.

Landscape and transportation infrastructures
Modeling the impact of infrastructures on ecological networks

The development of linear infrastructures leads to the artificialization and carve-up of landscapes across scales. Landscape fragmentation is a spatial process that is accompanied by a progressive decline in the connectivity between the elements needed for the smooth operation of ecological processes. Thus, maintaining a proper degree of connectivity between natural habitats, one that is compatible with human activities, has become a major issue for the preservation of biodiversity.

By mobilizing methods from graph theory and landscape ecology, the thesis seeks to demonstrate the value of landscape graphs for modeling ecological networks when analyzing the impacts of transportation infrastructures at regional scale.

The modeling approach has demonstrated the influence of the roe deer ecological network on the location of roadkill hotspots of the species on the DIR est road network in Franche-Comté. The work has also allowed us (1) to propose a methodological framework for locating the potential impact of the eastern branch of the Rhine-Rhône HSR on a species distribution, and (2) to estimate the range of disruption caused by this infrastructure. Finally, two approaches are proposed for quantifying and prioritizing improvements to prevent or mitigate these impacts. The results show the relevance of including ecological networks in environmental impact assessments of transportation infrastructures.

Keywords : ecological networks, linear infrastructures, environmental impact assessment, mitigation, modeling, landscape graphs, connectivity metrics.