Abstract

In Luxembourg, daily mobility patterns of both cross-border workers and residents lead to a strong car dependance. This process encourages urban sprawl. Meanwhile the country is faced to increasing housing needs but has to reduce land consumption. Within this context, the main objective of this thesis is to throw light about the relation between residential growth patterns and daily mobility behaviors. In this way, a normative planning approach has been adopted. This approach proposes new planning norms for achieving a series of planning objectives. Quantitative rules are the tools used to apply the norms. Three steps have been done : i) conception of residential growth scenarios for 2030. By applying a fractal rule, we obtain realistic residential development patterns ; ii) spatial simulation of residential growth scenarios, with the MUP-City platform and iii) assessment of simulated spatial configurations regarding both the spatial accessibility to rural and urban amenities (GIS calculations) and the sustainability of daily mobility behaviors (simulations with the MobiSim platform).

In most of the scenarios, spatial accessibility to a various range of facilities (retails, services, green spaces, leisure and public transport stations) is increased compared to the initial state observed in 2010. Simulated daily mobility, by taking into account individual behaviors of agents in the model, confirms the interest of the proposed scenarios. The modal share of car use, which was 70% in 2010, decreases in all cases. It reaches 58% in 2030 for one scenario. Simultaneously, the distances and the time-budget of pedestrians strongly raise.

This doctoral research shows the interest of a normative approach applied to spatial planning issues, particularly in terms of residential development. The results obtained also underline the interest of fractals for modeling urban forms, both at local (neighborhood, municipality) and global (urban region) scales.

Keywords : planning, prospective, daily mobility, urban forms, spatial simulation

 

 


Cookies settings

×

Functional Cookies

Ce site utilise des cookies pour assurer son bon fonctionnement et ne peuvent pas être désactivés de nos systèmes. Nous ne les utilisons pas à des fins publicitaires. Si ces cookies sont bloqués, certaines parties du site ne pourront pas fonctionner.

Measure of audience

Ce site utilise des cookies de mesure et d’analyse d’audience, tels que Google Analytics et Google Ads, afin d’évaluer et d’améliorer notre site internet.

Social Networks / Videos

Des plug-ins de réseaux sociaux et de vidéos, qui exploitent des cookies, sont présents sur ce site web. Ils permettent d’améliorer la convivialité et la promotion du site grâce à différentes interactions sociales.

Other cookies

Ce site web utilise un certain nombre de cookies pour gérer, par exemple, les sessions utilisateurs.

Strony internetowe